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Abstract. We present a multistart method for solving global satisfycing problems. The method uses 
data generated by linearly converging local algorithms to estimate the cost value at the local minimum 
to which the local search is converging. When the estimate indicates that the local search is converging 
to a value higher than the satisfycing value, the local search is interrupted and a new local search is 
initiated from a randomly generated point. When the satisfycing problem is difficult and the estimation 
scheme is fairly accurate, the new method is superior over a straightforward adaptation of classical 
multistart methods. 
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1. I n t r o d u c t i o n  

T h e  task of  finding parameters  which satisfy pe r fo rmance  specifications is of  great  

impor t ance  both  in engineer ing design and in economics  planning.  In  engineering,  

pa ramete r s  which satisfy specifications are referred to as feasible designs (see 

[14]), while in economics  the special t e rm satisfycing decisions has been  coined to 

describe t h e m  (see, e.g. [22, 10]). 
F requen t ly ,  pe r fo rmance  specifications can be expressed in terms of  a system of  

inequali t ies,  such as 

max~bJ(x, y j ) ~ < b j ,  j = 1 , 2 , . . . , l ,  (1.1) 
yjEYj 

where  ~b j" ~n x ~mj__~ ~,  y j  C ~lj, and the bj express the desired satisfycing level 

for  the j - th  specification. T he  system of  inequalities (1.1) is obviously equivalent  

to  the m o r e  compac t  fo rm 

~J(x)  ~< b j ,  j = 1, 2 , . . . ,  l ,  (1.2) 
where  

�9 W ( x )  ~ = max ~b J(x, y ) ,  
yjEYj 

Assuming  that  all b j > O ,  we 

~ :  [~'~-~ ~ by 

'W(x) 
q~(x) = max - -  - 1 , 

j~l bj 

] =  1 , 2 , . . . ,  I .  (1.3) 

can define a normal ized satisfycing funct ion 

(1.4) 
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where _/a__ {1, 2 , . . . ,  l}. Then we can replace the original system of inequalities 
(1.1) by the single nonsmooth inequality 

�9 (x) ~< v ,  (1.5) 

where v/> 0 is the overall satisfycing level, introduced to account for the 
possibility that the specifications are not consistent. 

Quite commonly, the functions ~bJ(., .)  and their gradients V~bJ(-, -) are 
Lipschitz continuous and the sets ~ are compact intervals of the real line. In such 
cases, it for every local minimizer 2, ~(2)  < 0, then an implementable algorithm 
such as the one presented in [17], which combines the Pshenichnyi-Pironneau- 
Polak minimax algorithm [18, 12, 14] with appropriate schemes for the discretiza- 
tion of the sets Yj, is capable of finding a satisfying solution x* in a finite number 
of iterations. Unfortunately,  it is not uncommon for a satisfycing function to have 
strictly positive local minima, which can trap a minimax algorithm. Thus we see 
that although the satisfycing problem is easier than that of finding the global 
minimum of ~ ( .  ), the two problems do have common features. 

The Pshenichnyi-Pironneau-Polak minimax algorithm converges linearly (see 
[15]). However ,  the standard rate of convergence analysis addresses only the 
conceptual algorithm: it does not take into account the effect of the inevitable 
discretizations of the sets Yj in (1.1), required for the evaluation of the functions 
~ i ( .  ). Recently, we have developed a rate preserving adaptive discretization 
scheme which results in an implementable version of this algorithm which 
converges with the same rate as the conceptual version [16]. 

Now, as we will see in Section 3, whenever we use a linearly converging 
algorithm to minimize a function ",I~(-), we can use the values of ~ ( - )  at the 
points it constructs to estimate the local minimum value to which it is converging. 
Clearly, if the estimated local minimum value is larger than v, it makes sense to 
terminate the run and use a random reinitialization. The combination of this 
simple idea with well tried and highly efficient multistart global optimization 
techniques, including clustering, as in [3, 19, 20] and [21], is the basis of the novel 
multistart method for satisfycing problems presented in this paper. 

In Section 2 we present our algorithm and analyze its performance under the 
assumption that the functions q~J(- ) can be evaluated without discretization (e.g., 
when the sets Yj are singletons), because it is currently too difficult to account for 
the discretization effects. We show that when our local minimum value prediction 
method is fairly reliable and the satisfycing problem is inherently difficult, our 
multistart satisfycing method is demonstrably better than the underlying multistart 
method which does not use such estimates. Our analysis does not take "into 
account the beneficial effects of clustering, since these affect both our method and 
the underlying multistart method more or less equally. In Section 3 we present 
our method for estimating the value of ~ ( .  ) at the local minimum to which the 
algorithm appears to be converging. Numerical results are presented in Section 4. 
These show thht by and large, our local minimum value prediction method is 



M U L T I S T A R T  M E T H O D  141 

highly reliable and that the new multistart method is considerably superior to the 
original multistart method. 

2. Multistart Methods for Global Satisfycing Problem 

To be realistic, the decision variable x in (1.1) must be assumed to be bounded. 
Hence  consider global satisfycing problems of the form 

GSP: find x* E B C ~" such that ~(x*)  ~< v ,  (2.1a) 

where 

B={xE~nlli<~xi<~ui,  i = l , . . . , n } ,  (2.1b) 

and the function ~ ( . )  is as defined in (1.4), with the ~ J :  B - - - ~ ,  j E / e i t h e r  
continuously differentiable or of the form (1.3), in which case we assume that the 
sets Yj are compact intervals and that the functions ~b J ( . , .  ) and their gradients 
V~b ~(. , .  ), are locally Lipschitz continuous. 

We will refer to x* and 1,, in (2.1a), as a satisfycing solution and the satisfycing 
value, respectively. 

To construct our new algorithm, we begin with a simple multistart method for 
solving the global satisfycing problem GSP, which is an obvious adaptation of a 
standard multistart method for finding the global minimizer of ~ ( - )  (see, e.g. 
[1, 2, 4, 6, 19]). We then modify this method by introducing into its termination 
tests estimates of the local minimum value to which the local search algorithm is 
converging. Although clustering schemes such as those in [3, 19, 20, 21] improve 
the performance of multistart global optimization methods, to simplify our 
analysis, we will not incorporate them in the algorithms below because they have 
exactly the same beneficial effect both on the simple multistart algorithm and our 
modification of it. However ,  we do expect these clustering techniques to be used 
in the final implementation of our method. 

Let  A : B--> B denote the map defined by one iteration of a minimax algorithm. 
The simple multistart method for solving global satisfycing problems, below, is 
assumed to use a standard local search stopping rule, such as the step length, or 
value of an optimality criterion, dropping below a certain threshold. 

Step O: 
Step 1: 
Step 2: 
Step 3: 

M A S T E R  A L G O R I T H M  2.1 (Simple Multistart Method for GSP). 
Set i = 1. 

i Draw a random point xi from B. Set z 0 = xi and ] -- 0. 
i Compute  z~ = A(z;=l). 

If ~(z~) ~< z,, then z} is a satifycing solution; stop. 
Else, 

If the local search stopping rule is satisfied, stop the local search, set 
i = i + l  and go to Step 1; 
Else, replace ] by ] + 1 and go to Step 2. [] 
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It is quite obvious that the simple multistart method is not very efficient because it 
may keep rediscovering the same unacceptable local minimizer x', (i.e. qt(x')  > 
u). Clustering schemes, such as those in [3,19,20,21], reduce the occurrence of 
this undesirable phenomenon and can be used both in conjunction with Master 

Algorithm 2.1 as well as with the following one, 
In the next section, we will describe an estimation scheme which uses the 

outcome of a certain number of iterations of the Pshenichnyi-Pironneau-Polak 
minimax algorithm to predict the value of aI'(. ) at the local minimizer to which 
the algorithm is converging. For the time being, we simply assume that we have 
such an estimation scheme associated with the local search algorithm, which, of 
course, need not be the Pshenichnyi-Pironneau-Polak minimax algorithm. Fur- 
thermore,  we do not require that the estimation scheme be 100% accurate, in a 
sense to be made clear shortly. 

For  any x E B and positive integer k, let ~r.i.(X, k) denote the predicted local 
minimum value, yielded by the estimation scheme on the basis of information 
produced in performing k iterations using the local algorithm A, starting from the 
initial point x, and let ~mi,(X) denote the actual local minimum value to which the 
sequence {~(Ai(x))}~=o converges (with A~ x). Our new algorithm is as 

follows: 

M A S T E R  A L G O R I T H M  2.2. (Multistart Method for GSP, with Estimation 

Scheme) 
Data: ml,  the minimum number of iterations in each local search required by 

Step O: 
Step 1: 
Step 2: 

the estimation scheme. 
Set i = 1. 

i Draw a random point x / f r o m  B. Set z 0 = x i and j = 0. 
For i = 1, 2 . . . . .  ml ,  compute 

Step 3: 
Step 4: 

Step 5: 

i i (2.2) zj = A(z j_ l ) .  

Estimate the local minimum value ~/min(Xi, ml) .  
If ~tmi,(Xi, rex) > ~', stop the local search, set i = i + 1 and go to Step 1. 

and iterate until Else, reinitialize the local search algorithm with Zml 
either a satisfycing solution is found or the local search stopping rule is 

satisfied. 
If a satisfycing solution was found, stop. Else, set i = i + 1 and go to Step 

1. [] 

We will carry out our analysis under the following assumptions. 

A SS UMP TI ON 2.1. (i) The random drawing is uniformly distributed on B. 
(ii) The functions ~ J ( - )  in (1.3) can be evaluated without discretization of 

intervals. 
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(iii) The work associated with each iteration of the local algorithm A ( - ) ,  
expressed in function evaluation equivalents, is C units, where C is a constant. 

(iv) The number of iterations used by one local search, starting from an initial 
point x i until the stopping rule is satisfied, is m 2. [] 

The actual number of iterations used by one local search, starting from an initial 
point x i until the stopping rule is satisfied, depends on the initial conditions in a 
manner that is difficult to model. Using an upper limit for m 2 is too conservative. 
In our analysis we will assume that m 2 is in fact equal to the average number of 
iterations observed. We will see from Table II that this assumption does not lead 
to incorrect final estimates. 

N O T A T I O N :  (i) Let B 1 and B 2 denote two disjoint attraction regions for the 
local search algorithm, such that in B 1 the local minimum values are below or 
equal to the satisfycing value v, and in B 2 the local minimum values are above the 
satifycing value v, i.e., 

B~ ~ {x E B [ XI/rnin(X ) ~ /J}, (2.3a) 

B 2 ~ {x E B [ X[/'min(X ) > ~'}, (2.3b) 

(ii) Let B11(ml)  and B12(mx) be the two disjoint subsets of B 1, obtained by 
partitioning of B 1 according to the predicted local minimum value obtained at the 
end of m~ iterations of the local search, i.e. 

B1, (ml  ) a= {x  E B 1 I XFm,,(x, m,)  ~< v} (2.4a) 

B12(mt ) a= {x ~ B 1 [ ~mi,(X, ml)  > u}.  (2.4b) 

Similarly, let Bzl (m~) and B22(m ~) be the two disjoint subsets of B 2, obtained by 
partitioning B 2 according to the predicted local minimum value, i.e., 

B21(ml ) ,a {X (E B 2 I ~mi.(X, ml)  ~< v} ,  (2.4c) 

B22(m, ) a__ {x E B 2 1 ~mi,(X, ml)  > v} .  (2.4d) 

(iii) For i = 1, 2, let a i a= V o l ( B i ) / V o I ( B ) ,  where "Vol" denotes the volume of 
the set in N", and for i = 1, 2 and j = 1, 2, let ao(ma) a V o l ( B i j ( m a ) ) / V o l ( B ) ,  

(iv) Let p, denote the probability that a satisfycing solution will be found in one 
try by Master Algorithm 2.1 (simple multistart method),  and let Pe denote the 
probability that a satisfycing solution will be found in one try by Master 
Algorithm 2.2 (multistart method with estimation scheme), respectively. 

(v) Let NI ,  and N I  e denote the number of outer iterations (initializations of the 
local algorithm) required for solving problem GSP by Master Algorithm 2.1 and 
Master Algorithm 2.2, respectively. Both N I  s and N I  e are random variables. 

(vi) Let N F  s and N F  e denote the number of function evaluations required for 
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solving problem GSP by Master Algorithm 2.1 and Master Algorithm 2.2, 
respectively. Both NF, and NF  e are random variables. [] 

Note that the number a t = Vol(B1)/Vol(B) is a strong indicator of the satisfycing 
problem difficulty, since the expected number of local searches for Master 
Algorithm 2.1 is 1/a 1 . Note also that Master Algorithm 2.1 will stop if and only if 
an initial point xi, produced by the random drawing, is in BI, and Master 
Algorithm 2.2 will stop if and only if an initial point x i, produced by the random 
drawing, is in B l l ( m l ) .  Hence we obtain the following, rather obvious result. 

P R O P O S I T I O N  2.1. (i) Ps = al = all(m1) + a~2(mt), Pe = a~a(m~). 
(ii) The probability distributions o f  N I  s and N I  e are geometric distributions and 

have the following form: 

P r o b ( N I s = k ) = p , ( 1 - p , ) ~ - l ,  k = 1 , 2 , . . . ,  (2.5) 

Prob(NI  e = k)  =pe(1  --pe)  ~-1 , k = 1,2 . . . .  , (2.6) 

(iii) Hence, 

Prob(NI  s ~< k) = ( 1 -  ( 1 - p ~ ) ~ ) ,  k = 1 , 2 , . . . ,  (2.7a) 

E(NIs)  = 1 / p , ,  D(NI , )  = (1 - p s ) / p  2 , (2.7b) 

and 

Prob(NI  e ~< k) = (1 - (1 - pe)~) ,  k = 1, 2 . . . .  , (2.8a) 

E(NIe)  = 1 /pe ,  D(NIe)  = (1 - -pe ) /p~ .  (2.8b) 

where E(z)  denotes the expectation and D(z )  denotes the standard deviation o f  a 

random variable, z. [] 

Thus,  we conclude that both multistart Master Algorithms terminate after a finite 
number  of reinitializations of the local search algorithm, with probability 1. We 

restate this result as: 

T H E O R E M  2.1. 

Prob(NI ,  < oo) = 1,  

Prob(NI  e < ~) = 1 . 

(2.9) 

(2.10) 

[] 

The calculation of the average number of function evaluations used by Master 
Algorithm 2.2 in solving GSP is complicated by the fact that when x i E B12(mi) U 
B22(ml), only m I iterations of local search algorithm are performed,  while in all 
the other  cases m 2 iterations are performed, and the fact that Master Algorithm 
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2.2 will stop if and only ifXNl e E BH(ml) .  For i = 1, 2 a n d j  = 1, 2, let the random 
variable Nlij be the total number of local searches originated from starting points 
in Bij(ml). Clearly NI  n = 1. Hence,  NI  e can be expressed as 1 + NI12 + NI21 + 
NI22. Therefore,  NF~ = Cm~(NIs2 + N/22 ) + Cm2(1 + NI2s ). Note that Master 
Algorithm 2.2 will stop in k + 1 local searches, where k i> 0, if and only if the 
starting points in the first k local searches are not in Bsi(m~) and the starting 
point in the last local search is in B11(m~). Hence we get the following result: 

P R O P O S I T I O N  2.2. (i) The joint distribution of  (NI~2 , NI21 , NI22 ) is of  the form 

Prob(NI12 = is2 , NI21 = i2s , NI22 = i22 ) 

(i12 -}- i2s --I- i22)! 

i12 !i2s ! i22 ! 
asl(m 1)as2(m ~)'~2a2I (m,)'Z~a22(m 1)'22. 

(ii) The joint distribution of  (NI12 + NI22, NI21 ) /s of the form 

(2.11) 

Prob(NI12 + NI22 = i, NI21 =- i21 ) 

(i + i21)[ i i21 
- -  all(ml)[asa(ml) + a22(ms) ] a21(ml) �9 

i!i21! (2.12) 

[] 

T H E O R E M  2.2. The expected values E(NF,)  and E(NFe) satisfy the following 
relations 

E(NFs) = Cm2E(NIs) = Cm2/p, = Cm2/a 1 

= Cm 2 (al l(ms) + a21(ml)) + Cm 2 (as2(ml) + a22(ms)) 
(asl(ms) + a12(ml) ) (ass(ms) + al2(ms) ) ' 

(2.13) 

(ass(ml) + a21(ma) ) (a12(m~) + a22(ms) ) 
E(NFe) = Cm 2 aal(ms ) + Cm I al i (ml ) 

(2.14) 

E(NFe) __ 
E(NF,)  

al m 1 
all(m1) [a l l (ml)  + aii(mx) ) + - -  (as2(ml) + a22(ml))] . m 2 

(2.15) 

Proof. (2.13) follows immediately from Proposition 2.1(i), (iii) and the fact 
that NF s = CmeNI s. Let us assume that the number of local searches started from 
B21 is i, and the number of local searches started from B12 and B22 is j, where 
i + j = k. Then, clearly, the probability of such an occurrence is Prob(NI12 + 
N22 = j, N21 = i), and the number of function evaluations involved is Cm2(1 + 
i) + Cmlj .  Therefore,  we have that 
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E(NFe)= E E 
k = O  i + j = k  

= Z Z  
k = O  i + ] = k  

X (a12(m1)+ a22(m1))Ja21(m1) i 

= a l l (mi)  E E (i + j)! (Cm2 + Cm2i + Cml j  ) 
i = 0  j = O  i!j! 

X (al2(ml) + a22(mI))Ja21(ml) i . 

Making use of the fact that for all pairs (dl, d2) such that - 1  < d 1 

~ 0 ~ 0  ( / + j ) '  / i = l / ( l - d l - d 2 )  : = i!j! did2 

and 

(Cm2(1 + i) + Cmlj)Prob(NI12 + NI22 = j ,  

( i  + j ) !  ala(ml ) (Cm2(1 + i) + Cml j  ) 

NI21 = i) 

(2.16) 

+ d 2 < l ,  

cc 

i~=o~oi (i+j)! , i=d2/(l-dl-d2)2 .= .= i!j! did2 

and the fact that aH(ml)  + a12(ml) + a21(ml) + a 2 2 ( m l )  = 1, we obtain from 

Cm2 

(2.16) that 

al2(ml) -- a22(ml) -- a21(m1) ) 
E(NF~) = a l l (ml)  [ (1 - 

(2.17) 

+ Cm2azl(ml) 

(1 - a12(ml) - a22(ml) - azl(ml) - -  a21(ml)) 2 

Cml(alz(m1) + a22(ml)) ] 
__ - -  . . . . . . .  2 J  

+ (1 a t z ( m l ) -  a = ( m l ) -  azl(ml) ) 

(an(m1) + azl(ml)) (alz(m1) + azz(ml)) 
= Cm 2 all(m1 ) + Cm 1 all(m1 ) 

[] 

R E M A R K  2.1. The average number of local searches used by Master Algorithm 
2.1 (NIs) is smaller than the average number of local searches used by Master 
Algorithm 2.2 (NIe) because a 1 1> an(m1).  However, on the average, the total 
number of function evaluations used by Master Algorithm 2.1 can be larger or 
smaller than the number of function evaluations used by Master Algorithm 2.2, 
depending on ( i )  the difficulty of the problem GSP (the smaller the a 1, the more 
difficult the problem), (ii) the accuracy of the estimation scheme, (the closer 
a l l (m 1) is to a 1 and a zz(m 1) to a z, the more accurate the estimation scheme), (iii) 
the smallness of the ratio of m 1 to m 2. It is quite obvious that Master Algorithm 
2.2 is definitely better than Master Algorithm 2.1, in terms of the expected 



M U L T I S T A R T  M E T H O D  147 

n u m b e r  of  funct ion evaluat ions ,  when  (i) GSP  is a hard  p rob l em,  i .e . ,  a 1 is quite 

small  re la t ive  to 1, (ii) the  es t imat ion  scheme  is quite accurate ,  and (iii) the rat io  

of  m I to m 2 is qui te  small.  

T o  ob ta in  a be t t e r  unders t and ing  of  the super ior i ty  of  Mas te r  A l g o r i t h m  2.2 over  
M a s t e r  A l g o r i t h m  2.1, we assume  tha t  our  es t imat ion  scheme has a probabi l i ty  of  
cor rec t  p red ic t ion  r(ml) , i .e. ,  

a l l (m1)  = r(ml)a 1 , a12(ml)  = ( 1 -  r(ml))al, (2.18a) 

a21(ml)  = (1 - r(ml))a2, a22(m1) = r(ml)a 2 . (2.18b) 

A f t e r  r ea r rang ing  te rms ,  we obta in  tha t  

E~--~,) I 1 -  -~2ml] [2 r (m l )a l - r (m l ) -  al + l / ( 1 -  ( 2 . 1 9 )  

Le t  us examine  the  equal  cost  con tou r  of  E(NFe)/E(NF,) as a funct ion of a 1 and 

r(m~), with mJm  2 fixed. The  equal  cost  con tour  in [0, 1] x [0, 1], for  E(NFe)/ 
E(NF,) = 7, is a h y p e r b o l a  def ined by 

[ r ( m l )  - 0.5][al  - (1 + 7 " ) / 2 ]  = (7  - 1 - ml/m2) 
4 ( 1 -  m~/m2) ' (2.20) 

whe re  7* = ~//(1 - ml/m2). The  equal  cost contours ,  in [0, 1] x [0, 1], of  E(NFe)/ 
E(NFs), for  ml/m 2 = 0.2, are  shown in Figure  1. We conclude f rom this figure 

"c(rnl) 0.25 0.4 0.6 0.8 E(NF~) - 1.0 
1.00 

0.80 
o~176176176176176 

0.70 . . . .  o~176176176176 
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0.50 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.2 
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................. ~ 1.4 
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Fig. 1. G r a p h  of  equal  cost contours  of  E(NFe)/E(NFs). 
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that to obtain a benefit from using Algorithm 2.2, when the problem is easy, i.e.,  
a 1 is near unity, we must have very good prediction as to which partition the 
starting point belongs to. However ,  as the problem becomes more difficult, i .e.,  
aa becomes smaller, one can obtain considerable benefits from using Algorithm 
2.2 even when the probability of correct prediction is only somewhat higher than 

0.5. 

3. Estimation Scheme for Linearly Convergent Algorithm 
ov 

Now suppose that if {zj}/= 0 is a sequence constructed by the local search 
algorithm in solving minze B W(z), then the corresponding sequence of costs 
{W(zi)}~= 0 is monotone decreasing and converges linearly to ~I'*, a local minimum 

value, i.e.,  there exist constants 0* 6 (0, 1) and/3* > 0, such that 

q~ (z i ) -~*~< /3*0  *~, i = 0 , 1 , 2 , . . . .  (3.1a) 

We will develop a scheme for estimating the local minimum value ~*  and rate of 

convergence constants 13" and 0". 
Suppose that the starting point x E B is given and, for i = 0, 1 , . . . ,  m 1, let 

~ = * ( A i ( x ) ) ,  so that xP 0 > ~r 1 ~> ' ' '  ~" ~tFml. The worst case situation correspond- 

ing to (3.1a) is given by the following equivalent equations: 

xP" i - xF* = / 3 " 0  *i , for i = 0, 1 . . . . .  m 1 . (3.1b) 

~ m  1 _ xp.* = 0 , ~ 1 - i ( ~  i - W*),  for i = 0, 1 . . . .  , m 1 . (3.1c) 

Estimation of xp* and 0* by means of a least squares fit is not very satisfactory 
because (i) the resulting estimate ~ of the local minimum value W* may be larger 
than Win1' and (ii) the least squares fit problem is a nonlinear minimization 
problem. Hence we propose using the recursive process that we will now 

describe. 1 
Suppose that we have an estimate 0 of the rate of convergence constant 0",  

then an estimate ~ (0 )  of the local minimum value ~*  can be obtained by 

averaging the values given by (3.1c), viz: 

~I'~(0) = ! (~I ' tml-  Oml--i'~f) ( 3 . 2 )  

m~ i=0 ( 1 -  0 mr - i )  

On the other  hand, if we have an estimate q~ of the local minimum value ~ * ,  then 
we can use (3.1b) to set up a linear least squares fit problem to obtain estimates 
/~(q~), t )(~),  of the rate of convergence constants/3*, 0 " ,  as follows: 

m 1 
(~(,tr),/~(,j,r)) = argmin ~ [log(qg~ - ~ ) )  - i log(O) - log(/3)] 2 . (3.3) 

Since, in the end, we only require an estimate of ~*  and since q~(. ), as defined 
by (3.2), does not depend on/3,  we can d i scard /3(~) ,  as defined by (3.3), and 
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combine (3.2), (3.3) to define a map O: (0, 1)---~ (0, 1), with O ( 0 ) =  0(~r(0)). We 
propose to use any fixed point 0 of the map O as our estimate of the rate of 
convergence constant 0". 

PROPOSITION 3.1. The functions qr(. ) and 0 have following properties: 
(i) The function qr(. ) is strictly decreasing, with ~(0) = ~Itml and q'(1) = - ~ .  
(ii) For any 0 E (0, 1), ml[ 

log(O(O)) = 2 ( i -  m1/2)~ogt,t~--- - ~ 0 ,  [ml(ml + 1) 
i > m l / 2  

x (m 1 + 2)/12] .  (3.4) 

(iii) The function | ) is strictly increasing, with lim 0(0)  = 0 and lim 0(0)  = 1. 
0.-*0 0-..~1 

Proof. (i) Since ~ml <qri for i = 0, 1 , . . . ,  m I --1, each term in the sum in 
(3.2) is strictly decreasing, and hence ~ ( .  ) is strictly decreasing. Therefore 
q~(0) = ~ml and ~ ( 1 ) = - ~ .  

(ii) The relation (3.4) follows directly from the expression for the solution of 
the linear least squares problem (3.3). 

(iii) Since q~(- ) is strictly decreasing and ~i < ~m1-1 for i > ma/2, (~i -- ~(0)) / 
(q~m~-i -- q~(0)) is strictly increasing for i > ml/2. Making use of the fact that the 
logarithm is a strictly increasing function, we conclude that each term on the right 
side of the summation in (3.4) is strictly increasing. Therefore O(- )  is strictly 
increasing. It now follows from (i) and (ii) that l o g ( |  and 
log( |  = 0. Hence |  = 0 and O(1- )  = 1. [] 

In view of the above established properties of the map | ), we can propose the 
following bisection scheme for locating a fixed point of the map O(. ), if it exists. 2 

ESTIMATION SCHEME 3.1. 
Step O: Select initial lower and uppers bound for the fixed point of O(. ), 0 l, 0u, 

respectively (e.g., 01 = 0.0001 and 0 u = 0.9999). 
Step 1: If 0 u - 0 t < 0.0001, then accept 0 = (0 u + 0t)/2 as the estimate of the rate 

of convergence constant 0", and ~(0)  as the estimate of the local 
minimum value ~* ,  and stop. 
Else, go to Step 2. 

Step 2: Set 0 = (0, + 0l)/2. If O(0) > 0, set 01 = 0. Else, set 0~ = 0. Go to Step 1. 
[] 

R E M A R K  3.1. If the initial lower and upper bounds on the fixed point are such 
that O(01) > 0 l and O(Ou) < 0u, then 0, the result of the above estimation scheme, 
is an approximate fixed point, say 0", which is stable in the sense that there is a 
neighborhood of 0", say (01, 02), such that for any 0 E (01, 0"), 0 < 0 (0)< 0", 
while for 0 E (0", 02), 0* < O(0) < 0. Although one can construct defining data, in 
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Fig. 2. Graph of the map O(. ) for Data set 1. 

ml the form of a monotone decreasing sequence {~I/i}i=0, for which O(.  ) has no fixed 
point in (0, 1), our numerical experience shows that in practice this is highly 
unlikely when the data is constructed by a linearly converging algorithm. Further- 
more,  in our numerical experience we have not encountered a case where |  ) 

had more than one fixed point. [] 

To test the accuracy of the estimation scheme, we consider two sequences, and set 
m I = 10. The first sequence converges geometrically to zero and is defined by 
~i  = 10(0.5) i for i = 0, 1, 2 , . . . ,  for the other sequence we assume that we only 
have the first 10 points: (68.0, 43.0, 36.0, 28.0, 21.0, 18.0, 16.0, 14.5, 13.0, 12.0, 
11.5). Figures 2 and 3 show the graph of O(.  ) for these two cases. We see that in 
both cases |  ) has a fixed point, and that the fixed point of O(.  ) associated with 
the first sequence is 0.5, which is the actual rate of convergence of this sequence. 
Figure 4 shows how accurately the linearly converging sequence, /~(~)i + ~(ff) ,  
approximates the sequence ~ for the second test sequence. 

4. Numerical  Results 

To obtain statistical information needed to compare Master Algorithm 2.1 with 
Master Algorithm 2.2, we carried out a set of computations to determine the 
range of the various quantities which determine their relative effectiveness. Our 
test problems include seven "classical" global optimization problems described in 
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Fig. 3. Graph of the map O(- ) for Data Set 2. 
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[6] and eighteen test problems described in [9]. The satisfycing values were chosen 
to be only slightly larger than the global minimum values, so as to make the 
satisfycing problems fairly difficult. A summary of the essential features of these 
test problems is shown in Table I, where the number of variables n, the number 
of local minima n*, the global minimum value M (rounded to four digits), and the 
satisfycing values are given in the second, third, fourth, and fifth column, 
respectively. 

In our numerical experiments, we used the local iteration algorithm A(.  ) map 
defined by a straightforward extension to problems with box constraints, of the 
Pshnichnyi-Pironneau-Polak algorithm. For problems of the form 

min max max ~J(x) ,  (4.1) 
x ~ B  j ~ t  j~l_ 

with the ~J(.  ) continuously differentiable, this algorithm computes search direc- 
tions h(x) according to the rule 

h(x) a argmin max ~ ( x )  + (V~J(x), h) + ~ [Ihll 2 , (4.2a) 
h E B - x  jEl_ 

and uses an Armijo type step size rule of the form 

,~(x) ~ /3~ = max { I~(x +/3kh(x)) -- ~ (x ) )  <~/3kozO(x)} (4.2b) 
ken  

where N a__ {0, 1, 2 , . . . ) ,  a, /3 ~ (0, 1) are fixed parameters and the optimality 

Table I. Data for statistical analysis of Master Algorithms 2.1 and 2.2 

Problem n n* M v all(m1) a12(ml) a21(ml) a22(ml) rnl /m 2 

SQRIN5 4 5 -10.15 -10.0  0.156 0.000 0.808 0.036 0.175 
SQRIN7 4 7 -10.40 -10.0  0.704 0.001 0.234 0,060 0.200 
SQRIN10 4 10 -10.54 -10.0  0.795 0.000 0.145 0.060 0.205 
HARTMAN3 3 4 -3.998 -3 .5  0,785 0.105 0.000 0.110 0,166 
HARTMAN6 6 4 -3.322 -3 .0  0.985 0,000 0,000 0.015 0.045 
RCOS 2 3 0.3979 1.0 0.933 0.067 0.000 0.000 0.163 
GOLDPR 2 4 3.000 4.0 0.153 0.423 0,053 0.373 0.058 
LEVY1 1 3 7.000 8.0 0.780 0.000 0.000 0.220 0.259 
LEVY2 1 19 14.5 -14.0  0.398 0.000 0.000 0.602 0.267 
LEVY3 2 760 -186.7 -180.0 0.070 0.001 0.025 0.904 0.174 
LEVY4 2 760 -186.7 -180.0 0.011 0.000 0.052 0.937 0.176 
LEVY5 2 760 -186.7 -180.0 0.015 0.000 0.051 0.934 0.176 
LEVY6 2 6 -1.032 -0 .5  0.782 0.000 0.005 0.213 0.287 
LEVY7 2 25 0.000 0.25 0.416 0.022 0.008 0.553 0.060 
LEVY8 3 125 0.000 0.25 0.363 0.080 0.016 0.540 0.038 
LEVY9 4 625 0.000 0,25 0.329 0.121 0.018 0.532 0.030 
LEVY10 5 10 s 0.000 0.25 0.312 0.136 0.026 0.527 0.026 
L E V Y l l  8 108 0.000 0.25 0.286 0.164 0.034 0.506 0.023 
LEVY12 10 101~ 0.000 0.25 0.284 0.202 0.040 0.474 0.022 
LEVY13 2 900 0,000 0.25 0.058 0.002 0.016 0.924 0.021 
LEVY14 3 2700 0.000 0.25 0,010 0.012 0.014 0.964 0.016 
LEVY15 4 71000 0.000 0.25 0.002 0.006 0.014 0.978 0.014 
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function O(x) is defined by 

O(x) a= min max ~J(x)  + (V~J(x),  h)  + lllhll 2" (4.2c) 
h E B - x  jEl_ 

Hence  for any x ~ B, 

A(x) = x + A(x)h(x). (4.3) 

We used the scheme proposed in Section 3, with ma = 10, to estimate the values 
of ~ (x )  = maxje z ~J(x)  at the local minimizers. 

For  each test problem, several hundred local searches were started from 
randomly generated points, using a uniform distribution on B. Due to computing 
time constraints, the maximum number of local searches per test problem was 
limited to 2500. In order  to obtain sufficient data for our estimates, we performed 
N = min(2500, 100 x number of known local minima) local searches for each 

problem. Since the local searches were continued until the stopping rule, 10(x)l 
10 -5, was satisfied, it was possible to determine whether a starting point x i was in 

B 1 or B 2. 
To estimate the aij(ml), we used the formula 

number of initial points tried in Bq(m~) 
aij(ml) = total number  of local searches (4.4) 

We obtained an estimate of m 2 by averaging the number of iterations used in the 
local searches. 

Columns 6-10 of Table I show the estimates of alx(ml) ,  ax2(ml) , a22(ml), and 
the ratio of ma to m E. All the numbers in the last five columns of Table I were 
rounded to 3 digits after the decimal point. 

For  Table II, we computed the estimates of E(NFe)/E(NFs) from the estimates 
of the aq(ml)  , Table I, and of m2, according to (2.15). The actual values of 
E(NFe)/E(NFs) were computed by applying the Master Algorithms 2.1 and 2.2 N 
times to each of the satisfycing problems in our tables, where N was as used for 
computing the estimates of these quantities. The values in the last four columns of 
Table II were calculated from the data in Table I. Referring to Table II, we 
observe as follows: 

(i) The estimated values of E(NFe)/E(NFs) are very close to the actual values 
of E(NF~)/E(NFs) , except for Levy 7 -Levy  12, where the actual values are 
substantially smaller (i.e., actual performance much better) than the estimated 
values. 

(ii) With the exception of SQRIN5, the classical test problems in [6] are very 
easy, i.e., a I = al l (m1) + axz(rnl) is quite large, while most of Levy's problems 
are quite difficult. 

(iii) For  the hard problems, the expected number of function evaluations used 
by Master Algorithm 2.1 is about 4 times the expected number of function 
evaluations used by Master Algorithm 2.2 (our new algorithm). On easy problems 
Master Algorithm 2.2 is only slightly better  than Master Algorithm 2.1. 
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Table II. An evaluation of the relative effectiveness of Master Algorithms 2.1 and 2.2 

Problem Actual Estimated a 1 a 1 1 / a  1 

E(NF,) E(NFe) 
E(NF,) E(NFs) 

a22/a2 al 1 + a22 

SQRIN5 0.958 0.970 0.156 1.000 0.043 0.192 
SQRIN7 0.965 0.953 0.706 0.998 0.204 0.764 
SQRIN10 0.970 0.952 0.795 1.000 0.293 0.855 
HARTMAN3 0.859 0.931 0.890 0.882 1.000 0.895 
HARTMAN6 0.998 0.986 0.985 1.000 1.000 1.000 
RCOS 1.010 1.012 1.000 0.933 1.000 0.933 
GOLDPR 0.845 0.945 0.575 0.265 0.877 0.525 
LEVY1 0.801 0.837 0.780 1.000 1.000 1.000 
LEVY2 0.575 0.559 0.398 1.000 1.000 1.000 
LEVY3 0.327 0.255 0.071 0.989 0.973 0.974 
LEVY4 0.307 0.228 0.011 1.000 0.947 0.948 
LEVY5 0.313 0.230 0.015 1.000 0.948 0.949 
LEVY6 0.697 0.848 0.782 1.000 0.977 0.995 
LEVY7 0.273 0.484 0.438 0.950 0.985 0.970 
LEVY8 0.166 0.492 0.443 0.819 0.971 0.904 
LEVY9 0.146 0.502 0.450 0.731 0.967 0.861 
LEVY10 0.149 0.509 0.448 0.696 0.955 0.448 
LEVY11 0.160 0.539 0.470 0.609 0.955 0.792 
LEVY12 0.173 0.580 0.480 0.585 0.921 0.758 
LEVY13 0.078 0.097 0.060 0.973 0.983 0.982 
LEVY14 0.085 0.088 0.022 0.446 0.974 0.974 
LEVY15 0.127 0.147 0.008 0.200 0.986 0.980 

(iv) The last three columns of Table II enable us to evaluate the reliability of 
our Estimation Scheme 3.1 on the problems tested. We note that a l l ( m l ) / a  1 is 
the fraction of times we were able to establish correctly than an initial x ~ B1 is in 
fact in B1; a22(m1)/a I is the fraction of times we were able to establish correctly 
that an initial x E B 2 is in fact in B2; and finally, a11(m~) + a22(m~) is the fraction 
of times we correctly identified whether an initial point x is in Ba or in B 2. We see 
that our prediction success rate, averaged over the test problems, is well over 
80%, and that it is particularly good on Levy's problems. [] 

5. C onc lus ions  

We have presented a new multistart method for solving global satisfycing prob- 
lems. The novel feature of this method is the utilization of the fact that many 
minimax algorithms converge linearly, which makes it possible to estimate the 
local minimum value to which costs generated by a minimax algorithm converge. 
Hence,  when the projected local minimum value exceeds the satisfycing value, the 
local search is aborted. Our statistical data indicate that the new method is much 
superior to an obvious adaptation of a classical multistart, global optimization 
method,  whenever the satisfycing problem is difficult and our local minimum 
estimation scheme is fairly accurate. Our numerical experience show that in most 
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cases our estimation scheme is indeed quite accurate and hence the new method 
should prove a valuable addition to the decision maker's toolbox. 
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Notes  

Our estimation scheme seems to have elements in common with acceleration schemes for linearly 
converging sequences, see, e.g. [11]. 
2 Another way of finding a fixed point of @(-) is to generate a sequence 00, 01, 02 . . . .  numerical 
experiments show that this approach is very slow due to the fact that O(0) - 0 is quite fiat around the 
fixed point. 
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